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Bandpass Sigma Delta A-D Conversion

A.M. Thurston, T.H. Pearce, M.D. Higman,
M.J. Hawksford

GEC-Marconi Research Centre, Chelmsford, UK.
University of Essex, Colchester, U.K.

Modern high performance radio systems increasingly
rely on digital signal processing techniques. In many
cases performance is limited by the A-D conversion
process particularly where high linearity is required. In
this paper three examples are presented of bandpass
sigma-delta A-D converters which offer a cost effective
means of encoding narrowband IF signals to a high
linearity and with low spurious content.

Introduction

The technigue of base-band sigma-delta Analogue to Digital (A-D)
conversion is well established and is frequently uwsed in speech and
communication applications [1, 2]. More recently, single-bit conversion
schemes have found a wider application in digital-audio systems for both
A-D converters and Digital to Analogue (D-A) converters where enhanced
linearity especially at low signal levels is a principal advantage [3, 4].

For RF applications the base-band conversion scheme requires
demodulation of the message using two matched mixers fed by inphase
and quadrature carriers as shown in Figure 1. The output of each mixer is
then low pass filtered and subsequently encoded with separate A-D
converters. While this approach may be satisfactory for low resolution
systems it has inherent performance limitations due to I-Q imbalance and
sensitivity at the carrier due to masking by dc offsets. To ensure 40 dB 1Q
image rejection, for example, an amplitude and phase match of better than
0.1 dB and 1 degree respectively is necessary. This would mean that a
signal received at say 10 kHz above the IF centre frequency would produce
an image component only 40 dB lower at a frequency 10 kHz below the IF
centre frequency. For many applications this would present a serious
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limitation on resolution in the frequency domain, on single sideband
reception for example., Similarly the presence of DC offsets and low
frequency 1/f noise at the mixer outputs and A-D converter inputs will
produce a component which cannot be distinguished from a component at
the IF centre frequency. This will place a restriction on reception and
demodulation of signals requiring the extraction of a carrier component.
The DC component may be removed by high pass filtering the digital 1.Q
signals, but this will produce a null in the response around the IF centre
frequency.

A new design of sigma-delia A-D converter is presented which can
encode the signal at the intermediate frequency and then by digital post
processing convert to baseband I and Q as shown in Figure 2. This enables
the guadrature mixing to be achieved with a high degree of accuracy.
Orthogonality is goaranteed by sampling at four times the [F centre
frequency (fr). The two local oscillator signals are then of the form
1,0,-1,0 and 0, 1, 0, -1 representing samples of cos 2n f and sin 2% fi- .
The resultant 1,Q image rejection and DC offset is then set by the number
of bits in the digital processing, which can be made arbitrarily larger than
that of the A-D converter,

The technique of band-pass sigma-della conversion is described and a
method for designing band-pass A-D converters from existing baseband
modulator designs is given. Practical results are described with the
performance specified in conventional RF circuit terms,

The novel techniques deseribed here are the subject of worldwide
granted and pending patents.

Baseband Sigma-Delta Modulati

It is desirable in the transformation of a baseband sigma-delia
modulator to its bandpass equivalent that certain of the basic properties of
the coder remain unchanged. With the existence of a direct mapping
technique from baseband to bandpass this condition is easily met and
consequently much of the wealth of information regarding baseband
coders which has been acquired over the last few decades may be applied
almost directly to the bandpass equivalents. As a result parameters such as
overload levels, noise power densities, signal shaping properties and
statistical information about the signal levels within the coders already
exists and the process of designing bandpass coders is greatly simplhified.
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In this section the basic properties of baseband sigma-delta
modulators will be explained and several simple equations will be derived
to characterise key features of an example baseband coder. Later, when
the conversion from baseband to bandpass is applied, these equations will
be modified accordingly such that the effect of the transformation may be
seen.

Figure 3 shows an example of a baseband sigma-delta modulator. A
delayed version of the output signal Y(Z) is subtracted from the input
signal X(Z) to produce the error signal E(Z). The error signal is filtered
by the loop filter A(Z) to give a filtered error signal F(Z), where F(Z) is the
weighted sum of the first and second integrals of E(Z). The filtered error
signal is quantized, often quite coarsely, to produce the output signal. The
stability of the closed loop depends on the design of the loop filter and it is
here that the subtleties of different designs exist. This is particularly true
in the case of single bit modulators in which the open loop gain is not
defined and consequently stability is much harder to predict.

The basic properties of the coder can be seen by considering the
standard feedback loop model shown in Figure 4. In the figure, ‘A’
represents the filters in the feed forward path which would correspond to
the loop filter and the gain of the quantizer, and ‘B’ represents the filters in
the feed back path, which in the example modulator is just a simple delay.
The additive noise source is a crude model of the noise added by the
quantizer which is assumed to be white, though in practice this assumption
is not accurate. The two properties of interest are the ways in Wthh the
modulator filters the signal and shapes the noise.

Using the feedback loop model it is simple to establish the transfer
functions between each of the signal and noise inputs and the output.
These transfer functions may be called the Signal Transfer Function (STF)
and the Noise Transfer Function (NTF) respectively and are given by:-

A
STF =
1+AB
(1)
NTF = 1
" 1+AB
(2)

It is desirable that the signal be encoded without phase or amplitude
variation across the passband, and that the noise be heavily attenuated. At
first glance both of these seem possible over a wide frequency range by
making ‘A’ very large, but this cannot be achieved in practice because the
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loop would be unstable. However, ‘A’ can be made large over a narrow
band of frequencies by making its gain frequency dependent. In baseband
coders the loop filters have high gain at low frequencies and reduced gain
at high frequencies to maintain stability. As a result, at low frequencies,
the STF is virtually flat and the NTF heavily attenuates the quantizing
noise.

Returning to the example modulator given in Figure 3, the STF and
NTF may now be derived. Both derivations assume that the quantizer has
unity gain, which for the single bit quantizer is not accurate. However,
since the properties of the quantizer are unaffected by the baseband to
bandpass transformation this will not affect the final results. With the
unity gain assumption, the transfer functions are given below:-

2(Z -0.5)

STF(Z) = >

(3)
-1

ZZ

NTF(Z) =

..(4)

At low frequencies the zero in the STF introduces very little phase and
amplitude ripple to the signal, whilst the double zero in the NTF heavily
attenuates low frequency noise at the output of the coder. Figure 5 shows
the output spectrum of the example modulator with a sinusoidal input at
Nyquist/S0. The noise shaping properties of the coder are clearly seen.

Fundamental to the noise shaping properties of the coder is the open
loop transfer function between the input and the output of the quantizer.
This fact is readily confirmed in (2), the generalized formula for the NTF.
When considering purely digital modulators it is best described as a simple
open loop transfer function (OLTF), but when mixed digital and analogue
architectures are considered, as in the case of sigma-delta A-D converters,
this is more usefully described in terms of the open loop impulse response
(OLIR).  For practical reasons delay is implemented in the digital
feedback path since it is cumbersome to achieve in an analogue filter, and
consequently the digital loop filter in the feedforward path will have
numerator and denominator of equal order. The OLIR then neglects the
digital delay terms and describes only the true filtering properties of the
loop filter.

For the example modulator the open loop transfer function is given
by:
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22 -1

OLTF(Z) = Z-17 5
Separating the delay from the filter elements gives:

OLTF(Z) = 222_22 A

-1 (6)
for which the open loop impulse response can be shown to be:-

OLIR(n) = (2+n) n =0,1,2,3,.... -(7)
In virtually all baseband coders the OLIR takes the form of:-

OLIR(n) = (P+Qn) -(8)

where P and Q are the levels of the first and second order components of
the impulse response respectively. Such separation of the different order
components becomes highly relevant when analogue loop filters are
designed, as will be seen in section 5.

This then concludes the overview of the basic features of baseband
modulators and the conversion to bandpass will now be considered.

Conversion to Bandpass

It is possible to design sigma-delta modulators centred on any
frequency from dc to Nyquist, and indeed any frequency above Nyquist
since the sampled data has many aliased images reflected about multiples
of the sampling rate. Coders in which the IF lies between dc and Nyquist
are referred to as sampling coders, whilst those operating at an image
frequency above Nyquist are referred to as subsampling coders.

This paper is concerned only with coders in which the IF is positioned
at an odd multiple of the quarter sampling frequency since they have two
distinct advantages over their counterparts.  Firstly, the analogue loop
filters required in the A-D converters are rather simpler in design, and
secondly the digital mix to baseband I and Q signals is trivial to implement
since the digital mixing signals are easily generated as cos ={1, 0, -1, 0}

andsin={0,1,0,-1}.
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Consider the conventional design of IF encoder shown in Figure 1.
Two separate A-D converters are used, one each to encode the I and Q
components of the IF signal. The aim is to design one A-D converter to
encode the IF signal directly.

A first step towards this can be made by repositioning the mix to
baseband from the pre-conversion analogue domain to the post-conversion
digital domain. As a result the I and Q signals to be encoded will no
longer be at baseband but will be modulated by cosinusoidal and sinusoidal
carriers respectively, each at half the sampling frequency. The effect of
this is that the original baseband signals will now alternate in polarity from
sample to sample, and the modified A-D converters must be able to
accommodate this. = The modification is easily made to the example
baseband modulator of Figure 3. To achieve a polarity inversion with
every clock cycle, an invertor is placed immediately following every delay
element, or quite simply -Z is substituted for Z in the original architecture.

It is then noted that the I-Q separation in the system architecture is
achieved by sampling each A-D converter alternately with a 180 ° phase
difference between them and that the two A-D converters are otherwise
identical. It is therefore possible to arrange for one converter to encode
both I and Q signals in a time multiplexed fashion by simply doubling the
sample rate and replacing each delay element with a two stage shift register
to keep I and Q data separate. Thus for example on even numbered
sampling instants the in-phase component of the IF signal is presented to
the modulator, and the corresponding in-phase data is encoded by the
arithmetic operators of the modulator. Quadrature data is stored halfway
down the shift registers within the modulator and is not affected. On odd
numbered sampling instants the quadrature data is encoded whilst the
in-phase data sits in the shift registers. The conversion is made by
substituting Z* for Z in the recently modified coder. Combining the two
substitutions, i.e. -Z* for Z, gives the necessary substitution to convert the
baseband coder into its quarter sampling rate bandpass equivalent.

Figure 6 shows the resulting modulator after -Z” is substituted for Z in
the example coder for Figure 3. It is noted that the signals at the input
summing node are now added, though negative feedback is still achieved
since the two sample period loop delay corresponds to a 180 © phase shift
at the IF and hence the signals are added out of phase to achieve
cancellation.

The signal and noise transfer functions of the new modulator are given
below.
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2(Z*+0.5)

STF(Z) =
z (9)
2 2

NTF@z) = 42D
Z .(10)

Noise is now heavily attenuated around the quarter and three quarter
sampling frequencies allowing IF signals to be encoded, whilst the signal
transfer function is identical to that of the baseband coder except shifted to
the IF position.

The open loop impulse response is still of importance in demgmng
actual A-D converters, and is now given by:-

OLIR(n) = (2+%).cos%’1 n =0,1,2,3,....
(1)

Figure 7 shows the output spectrum of the bandpass modulator for an
input sinusoid at Nyquist/50 above the quarter sampling frequency. All
the properties of the baseband coder are preserved but are translated to the
IF position. The necessary loop filters are all that is now required before
an actual A-D converter can be designed.

Analogue Loop Filter Design

Figure 8 shows a practical structure for a bandpass sigma-delta A-D
converter. The digital loop filter of the example modulator is replaced by
an analogue bandpass filter, the design of which is to be considered in this
section. The single bit quantizer is replaced by a single bit A-D converter,
i.e. comparator with a sampled output. The delay in the feedback path is
still implemented digitally though the amount of delay introduced here is
not the total required since delay already exists in the analogue elements of
the circuit and the DACs will have some inherent delay between the arrival
of data at their inputs and the temporal centre of the energy of their output
pulses. Typically one half to one whole sample period of loop delay will
be achieved in these areas, leaving the remainder for the digital delay line.
The single bit DACs must be included in the feedback path as the output of
the digital delay line will not be sufficiently linear in most applications.
For optimum linearity in the DACs a return to zero output pulse is required
to minimize non-linear memory effects and consequently the output pulses
from the DACs will be shorter than the sampling interval.
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The key to the design of the converter lies in the design of the loop
filter, and for this two options exist; switched capacitor filters and true
analogue filters. For lower performance applications switched capacitor
implementations will suffice and allow complete integration of the
converter, however, since the analogue input is effectively sampled at the
input to the converter the normal IQ mismatch and non-linearity problems
associated with sample and hold circuits will be replicated in the output of
the A-D converter. For more demanding applications true analogue filters
offer the best solution since the need for a sample and hold is removed and
any errors introduced by the sampling process, which now takes place after
the loop filter, are subjected to the same noise shaping properties which
govern the quantizing noise. This paper is concerned with the latter
option.

For the coder to operate correctly the response of the loop filter to
both the analogue input signal and the pulsed waveform from the DACs
must match that of the digital loop filter. For the analogue signal the
match need only occur in and around the passband since out-of-band
components are not of interest and will have been removed before the
converter by filtering. This match may be achieved simply by considering
the required amplitude and phase response of the filter within the passband.
For the digitized signal from the DACs the match must be broadband and
is very complicated if considered in the frequency domain because the
cyclic repetition of the digital filters frequency response is not matched by
that of the analogue filter. For this reason a time domain analysis must be
used to match the pulse response of the analogue filter at the sampling
instants to the impulse response of the digital filter, usually referred to as
‘impulse invariant design’.

Consider again the architecture shown in Figure 8. The twin buffered
parallel LC filter has virtually identical phase and amplitude responses as
the digital loop filter both within the passband and considerably beyond.
The main difference is that the original digital filter offered infinite gain at
the resonant frequency whereas that of the LC filters will be determined by
the Q-factors. Equations (1) and (2) show that this will have little effect on
the STF but will limit the extent of noise shaping at the frequencies where
the mismatch occurs. In practice and with standard components this
implies that in the centre of the passband, approximately 1 to 2% of
Nyquist in width, the noise power spectrum flattens out rather than
continuing to fall as the centre frequency is approached.

The desired impulse response is achieved with three DACs. The
output of DACI is filtered by both LC filters and is used to generate the
second order component of the impulse response, whilst the output of
DAC?2 is filtered only once and generates the first order component.
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" DACS3 is a correction DAC and is required to compensate for effects
caused by the finite width of the pulses of the two main DACs. This can
_be made clearer by considering the mathematics.

Firstly the impulse response of the digital loop filter (11) must be
converted to a continuous.time waveform by substituting % for n, where T

is the sampling interval of the coder. The coefficient m comes from the
sampling rate to IF ratio and is given by m=4fy/f,.

CoLRE) = [24 ) cos®m _
OLIR(t) = [2+2T) cos T m = 1,3,5,...

~(12)

Th1s then is the waveform which must be generated. Laplace analysis
of the pulse waveform from the DACs and the response of the loop filters
allows two expressions to be written which-describe the filters pulse
response both during and after the application of the pulses. If the pulse
width is T and is centred on t=0 then the two equations for the open loop
pulse response are -

| CTLKK,( . 1) .
OL_PR.(t)‘ = {210,1(;2 t+§}sln0),,{t+5}

LK, . T T T
+0),,C smco,,{t+§} +I3]R —-Z-St <-2-
...(13)
-and
' : IKlej ®,T . . 0,7
OLPR(t) = 2(Dnczl’ccos 5 sin ®,t +2t sin——cos ®,t
21K, ®,T T
+ in— .R t2-
s eosa :
..(14)

where K, and K, are the gains of the buffer amplifiers in amps per volt, ®,
is the IF frequency in radians per second and C and R are the values of the
capacitors and the resistor shown in Figure 9. Values for I, I,, K, K,, C,
R, and 1 are selected to equate terms in cos®,t and t.cos®,? in (14) to
those in (12). Finally I, the current for DAC3, is selected to equate (13)
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and (12) at t=0. The error term in sin®,¢ found in (14) is cumbersome to

remove, but by pulsing the DACs very slightly earlier than originally
intended a phase shift can be introduced to compensate for this and no loss
of performance is found. A more detailed analysis may be found in [5].

A loop filter has now been designed which closely matches the phase
and amplitude response of the example digital filter, and an arrangement of
DAC:s is provided to generate the desired open loop pulse response. This
general approach may be used to design several different types of bandpass
sigma-delta A-D converters and in the following section examples will be
given of sampling, subsampling and interpolative coders.

Bandpass Sigma-Delta A-D Conversion

The techniques demonstrated in the previous section may be applied
generally to the design of several different types of converter and three
examples will now be given. The first is a standard sampling converter in
which the IF is positioned at one quarter of the sampling frequency and
will allow direct use of the equations given earlier. The second example is
a subsampling A-D converter in which the IF is positioned at three quarters
of the sampling frequency. To implement this it is necessary to adjust the
ratio of first and second order components of the open loop impulse
response to accommodate the reduction in oversampling ratio. The third
example is of an interpolating A-D converter, similar to the subsampling
converter but in which a two bit quantizer is used in conjunction with a
single bit DAC to extend the dynamic range whilst mamtalmng the
linearity advantages of smgle bit D-A conversion.

Sampling Bandpass Sigma-Delta A-D Converter

The design of this type of A-D converter, the most basic in the
bandpass sigma-delta family, has alreadv been extensively described in the
preceding sections and will not be covered further. The measured
performance of a prototype converter will instead be described in some
detail.

A-D converters are usually characterized in terms of resolution,
differential non-linearity etc., but this convention will not be adopted here
since conventional analogue terms such as signal to noise ratio and third
order intercept points are more relevant both to the applications of the
converters and to the performance of the converters themselves. In all
cases the reference power level used for measurements will be the overload
point of the converter in question, and figures will be quoted in dBO.
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The prototype converter to be described was designed to the
parameters given in the first column of Table 1. Figure 9 shows the
decimated output spectrum of the converter for a single tone input 3 dB
below overload and positioned 10 kHz above the centre of the passband.
The smaller signal to the left of the main tone is the third order distortion
component of the converter which is aliased back into the passband. The
first column of Table 2 describes the measured performance of the coder,
giving the in-band noise power spectral density, the third order intercept
point for a twin tone input and the spurious free dynamic range of the
converter in a 1 Hz noise bandwidth for a single tone input.

This performance may be compared to that of a conventional flash
A-D converter. Within the passband the noise floor is equivalent to that of
an 8 bit flash A-D converter sampling at 10 MHz, or at the decimated
output it is equivalent to an 11 bit flash A-D sampling at 200 kHz.
However the linearity and spurious free dynamic range of the sigma-delta
A-D converter are very much better than the equivalent flash A-D
converters, where distortion products tend not to fall with decreasing signal
level and spurious free dynamic ranges of around 55 dB are common.

Subsampling Bandpass Sigma Delta A-D Converter

This is an example of a converter in which the IF is positioned in the
second quantizing null, i.e. at three quarters of the sampling frequency.
The design procedure is very similar to that of a sampling converter except
for two main differences. Firstly, in order to encode a narrow passband at
three quarters of the sampling frequency analogue loop filters with
enhanced Q-factors will be required compared to those of a sampling A-D
converter since the IF is three times higher in this example. Consequently
the Q-factors will need to be exactly three times as large in order to
achieve the same in-band performance. Secondly the impulse invariant
design of the loop filter must now accommodate the higher IF of the loop
filters and accordingly ‘m’ is set to 3 in equation (12).

The complete set of design parameters and measured results for this
converter are given in the second columns of Tables 1 and 2 respectively.
Figure 10 shows the output spectrum of the prototype converter with a twin
tone input 3 dB below the twin tone overload level. In theory the
performance of the sampling and subsampling converters should be
identical, and a very close match is seen in the measured results. The main
cause for the fall in performance is that the required Q-factor of 300 was
difficult to achieve in practice and consequently a lower value had to be
accepted. This resulted in in-band noise and distortion components rising

© 1992 GEC-MARCONI LIMITED The copyright in this published document is the property of GEC-Marconi Limited who disclaim all
liability arising from its use.



slightly and degrading the performance, however, the resulting linearity
and spurious free dynamic range was still far better than that obtainable
from equivalent flash converters.

Interpolating bandpass Sigma-Delta A-D Converter

The aim of the interpolating converter is to reduce the redundancy of
the DAC in subsampled converters by operating it at four times the IF of
the converter, but to compliment this with extra levels in the quantizer
rather than extra speed. An interpolating look up table may then by used to
interface the low-speed multi-level data generated by the quantizer to the
higher-speed single-bit DAC in a pulse density format. In this example the
data is interpolated by a factor of 3 to convert it from a two-bit to a one-bit
data stream. With careful consideration of the phasing requirements the
necessary interpolating function is found to be as shown in Figure 11. The
combined response for all three pulses must then be used in the impulse
invariant design of the loop filter. This will now be considered in more
detail.

Generalizing the design of the loop filter somewhat, its pulse response
to the three pulses from the DAC must take the form of:-

K[P +—Q—'1).cos3ﬁ

2 2 (15)

where K is a scaling factor equal to the output levels of the quantiser and

must therefore take on one of the values 1 or £3. If the response of the
filter to a single pulse from the DAC is given by:-

(R +S—n).cos3ﬁ

’ ? ...(16)
then the composite response to the code representing +3 is given by:-
(1) coz{ 2] o) ) o)
«(17)
= 3((R +%SJ+S?”) . cos-:-)’—;t—n—
.(18)

whilst the composite response to the code representing +1 is given by:-
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2 2

1 Sn 31tn
= ((R +§S) +7J . cosT

These results are clearly of the correct form to achieve the desired
response given in (15). Two aspects must be considered here. Firstly, in
the interpolation lookup table I and Q separation must still be maintained
and so the pulses relating to the inphase component of the signal must be
time multiplexed with those relating to the quadrature component.
Secondly a more detailed analysis of the circuit shows that the desired
response of DAC3, the correction DAC, is now non-linear across the four
coding levels, but this is simple to implement in practice.

(R +£’1j . cosg—nﬁ+[k +S(n2+;)] . 00831t(n +§)+[R +S(n +?‘) )
(19)

..(20)

The design specifications and the measured performance of the
interpolative converter are given in the third columns of Tables 1 and 2
respectively whilst Figure 12 shows the output spectrum of the simulated
converter for a twin tone input 3 dB below overload: Comparing the
results with those of the subsampling coder the improved performance is
soon observed. The overload point of the interpolative converter is 10 dB
higher than that of its counterpart and this increase accounts for most of the
improvement in the in-band noise power density, which is referred to the
overload point of the converter. The linearity of the converter has also
improved and consequently the third order intercept point has risen.
Another improvement which is not shown in Table 2 is that as the overload
condition is approached the in-band noise power density of the
interpolative converter rises much less than in the subsampling and
sampling coders. Comparing these results with those of flash converters
the in-band noise performance is equivalent to 10 bits at 10 MHz, or at the
decimated output to a 13 bit converter sampling at 200 kHz. Once again
the linearity and spurious free dynamic range far exceed those of flash
converters.

Implementation

All the designs presented can be implemented using discrete
components. This allows easy experimentation with new ideas, though
obviously an integrated version is more suitable for a final production
model. Unlike switched capacitor implementations which allow the
possibility of complete integration, the analogue filters discussed in this
paper are not suitable for integration but do offer superior performance.
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As with all analogue to digital conversion schemes using feedback,
the performance of the converter is limited to the performance of the
component producing the cancellation signal. The use of a single bit DAC
eases the design, reducing it to a switch, thus optimising linearity. The
noise floor of the DAC and hence the dynamic range of the converter is
also limited by the quality of the clock signal driving it. The DAC output
must possess minimum jitter at transistion, needing close attention to clock
phase noise and pattern-dependent charge-storage behaviour in the DAC
itself.

One other factor that affects the noise floor of the converter is the Q
factor of the loop filters. By separating the poles of the loop filters wider
bandwidths may be encoded to a restricted dynamic range, and in this case
low Q-factors will suffice for the loop filters. However, to encode high
dynamic range, narrow bandwidth signals, the poles of the loop filters
would typically be coincident and their Q-factors would be maximized to
obtain the full dynamic range. Practically, Q-factors in excess of a few
hundred are difficult to achieve and this then presents a limitation on the
maximum attainable dynamic range.

For correct operation of the converter, the total open loop propagation
delay, including any clock delay, must be approximately two sample clock
periods. The effect this has on the implementation depends on the required
sample clock frequency. This delay can be achieved by a combination of
analogue and digital delay.

Once the input signal has been converted it is usually required that the
output data is decimated. This is not only to produce a multi-bit output,
but to reduce the data rate to one commensurate with the converters
bandwidth that allows further processing using general purpose devices.
However if transmission of the digital data is required, it may be easier to
do so before it is decimated. When doing this it must be remembered that
" a bit error rate sufficiently low to avoid any noticeable rise in the noise
floor the converter is required.

Due to the speed and complexity of the decimation process an
application specific integrated circuit (ASIC) is usually required. Cost and
power consumption make CMOS ASICs attractive although they may not
be fast enough for high sample frequencies. Operating at higher
frequencies allows wider bandwidths to be encoded creating further
problems. For wide bandwidths the output from the decimator will be at a
fairly high rate and if any further processing is required, this rate may be
too high for a general purpose device, such as a digital signal processor
(DSP), to handle. The solution would then be either complex discrete
circuits or more ASICs adding considerable cost.
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Conclusions

The sigma-delta A-D conversion technique has traditionally been
applied at baseband where, by exploiting the linearity advantages of
oversampled single bit D-A converters, high linearity decimated code may
be produced. The technique may easily be adapted to operate at an
intermediate frequency allowing high linearity conversion of IF signals
without the need for pre-conversion mix to baseband I and Q components.
With post-conversion mix to baseband and decimation the normal system
problems of IQ mismatch and masking by DC offsets are virtually
eliminated.

Three examples of bandpass sigma-delta A-D converter have been
presented. The first is a sampling converter in which the IF was positioned
at one quarter of the sampling frequency whilst the second is the
subsampling equivalent with the IF positioned at three quarters of the
sampling frequency. In both cases the decimated output is roughly
equivalent to 11 bit pcm coding at 200 kHz but with substantially
improved linearity and spurious free dynamic range compared to flash
conversion. The third example is an interpolative converter in which
extended dynamic range is achieved with two bit quantization whilst a one
bit DAC operating on an interpolated pulse density code is used to achieve
maximum linearity. In this case the decimated output is roughly equivalent
to 13 bit pcm at 200 kHz but again with significantly improved linearity
and with lower spurious content than can be achieved with flash
converters.

The converters may be employed for any application where high
linearity conversion of narrowband IF signals is required and are
particularly suited to high performance radio systems.
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Design Parameter Sampling  Subsampling Interpolative
IF 2.5 MHz 7.5 MHz 7.5 MHz
O/P word size 1 bit 1 bit 2 bits
O/P sampling rate 10 MHz 10 MHz 10 MHz
DAC size 1 bit 1 bit 1 bit
DAC rate 10 MHz 10 MHz 30 MHz
Bandwidth 100 kHz 100 kHz 100 kHz
Q-factor 100 300 300
Tablel

Design Parameters of the Sampling, Subsampling and Interpolative
Bandpass Sigma-Delta A-D Converter

Performance Sampling Subsampling Interpolative
Noise Power Density/Hz  -117 dBO -114 dBO -130 dBO
Third Order Intercept 26 dBO 24 dBO 32dBO
Spurious Free Dynamic

Range in 1 Hz
Single tone input 95 dB 92 dB 108 dB
Table 2

Performance of the Sampling, Subsampling and Interpolative
Bandpass Sigma-Delta A-D Converters
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Figure 1

Conventional digital IF system architecture with analogue mix to baseband
and seperate A/D converters in the I and Q paths.
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Figure 2
Altemative digital IF system architecture with single A/D converter encoding
the IF signal and subsequent digital mix to baseband.
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Example of Baseband Sigma Delta Modulator comprising loop filter A(z) and
quantizer Q in feed forward path and single delay element in feed back path.
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Standard Feedback Loop Model of Sigma Delta Modulator.
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Output Spectrum of Baseband Sigma Delta Modulator
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Figure 6

Bandpass Sigma Delta Modulator obtained by substltutmg -Z for z in the
baseband modulator of Figure 3.
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Figure 7
Output Spectrum of Bandpass Sigma Delta Modulator.
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Figure 8
Practical Implementation of Bandpass Sigma Delta A-D Converter.



Amplitude dB-overload
0

20 e e

_40_ ................................................................................

_120 . ] | ! 1 i 1 d Il | 1
50 40 -30 20 -10 O 10 20 30 40 50

Offset Frequency, kHz

Figure 9
Decimated Output Spectrum of Sampling Coder for Single Tone Input
3dB below overload.
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Figure 10

Decimated Output Spectrum of Subsampling Coder for Twin Tone Input
3dB below overload. :



lation -
Input Output Sequence
3 1 -1 1
2-bit data from 1 1 1 1 1-bit data to
quantizer at 3f./4 -1 -1 -1 -1 DAC:s at 3f,
-3 -1 1 -1
Figure 11

Definition of Interpolating Look-up Table to convert 4 level data to a 2 level
bit stream.
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Figure 12
Decimated Output Spectrum of Simulated Interpolative coder for twin tone input
3dB below overload.



